NAME (First,Last) : \qquad

Student ID

UW email \qquad

- Please use the same name that appears in Canvas.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of the second page of this exam.
- If you run out of space, continue your work on the back of the second page and indicate clearly on the problem page that you have done so.
- Unless stated otherwise, you MUST Justify your answers.
- Your work needs to be neat and legible.

Problem 1 Consider the following system :

$$
\left\{\begin{aligned}
x+y-z & =k \\
2 x+3 y+k z & =3 k \\
x+k y+3 z & =2 k
\end{aligned}\right.
$$

1. For which values of k does the system have no solutions?
2. For which values of k does the system have exactly one solution?
3. For which values of k does the system have infinitely many solutions ?

NAME (First,Last) :
Problem 2 Let A be the 4×4 matrix with columns $c_{1}, c_{2}, c_{3}, c_{4}$. The matrix $B=\left(\begin{array}{ccccc}\mid & \mid & \mid & \mid & a \\ \mid & \mid & \mid & \mid & b \\ c_{1} & c_{2} & c_{3} & c_{4} & c \\ \mid & \mid & \mid & \mid & d\end{array}\right)$
(that is B is the 4×5 matrix that consists of A plus an additional fifth column $\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$)
reduces to $\left(\begin{array}{ccccc}1 & 1 & -1 & 2 & a \\ 0 & 1 & -3 & -2 & b-a \\ 0 & 0 & 0 & 2 & c-b+a \\ 0 & 0 & 0 & 0 & d-a+2 b\end{array}\right)$

1. Are c_{1}, c_{2}, c_{3}, and c_{4} linearly independent? Justify your answer.
2. Are c_{1}, c_{2}, c_{4} linearly independent? Justify your answer.
3. Give an example of a vector $b \in R^{4}$ that it is not in $\operatorname{span}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, or explain why this is not possible. If you give an example, you need to justify why your example works.

Problem 3 This problem has three unrelated parts.

1. Give an example of a linear system with two equations and three variables that has no solutions, or explain why this is not possible.
2. Give an example of a $3 x 3$ matrix A that has linearly independent columns and can be reduced (by performing a sequence of elementary operations) to a matrix B that has linearly dependent columns, or explain why this is not possible.
3. Give an example of three non zero vectors u_{1}, u_{2}, u_{3} in R^{3} that are linearly dependent, but u_{1} is not in span $\left(u_{2}, u_{3}\right)$, or explain why this is not possible.
